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Importance of the
soll environment

* Soils are an essential component of
terrestrial ecosystems. Approx. 1 g soil
contains 1x 10% bacteria.

* Plants and microbes interact with each
other in biogeochemical cycles and can
significantly alter nutrient availability.

 Oftotal area of world’s land mass (13.07
x 10° ha), only 11.3% is cultivated for crops,
24.6% permanent grazing, 34.1% forest and
woodland, 31% other land e.g. urban/
industry.



Why shall we prevent
soil pollution?

e Soilis a non-renewable natural
resource

 |Important resource for food
production, etc.

e Soils are increasingly degrading or
irreversibly lost across the developed
countries (US, EU, Japan....)

Food and fiber
production

Recycling
factory

Regulator of
water supply

Foundation for
structures

Affects land-use

decision making

public policy

Habitat for soil
organisms

Construction
material
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Chemical treatment

Bioremediation

5%

Most lucrative 2023 -2031

https://www.alliedmarketresearch.com/environmental-remediation-market-A15965
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Evolution of remediation approaches

( Management of contaminated sites ]

Evaluation of the Impacts Recovery / Rehabilitation / Remediation
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Relevance and application of biochar as
tool for soll
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https://www.intechopen.com/chapters/76192
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Predicting remediation: the “Algorithm”

MJM Only when all of the

results (including
chemical, biological,

toxicological and

microbiological data) are
compiled together, we
can be confident that
active bioremediation is
taking place.

BF = bioremediation factor; | = induction; [TPH] = Total petroleum hydrocarbons concentration
MPN = most probable number ; Resp = respiration



Predicting
remediation:
the “Algorithm”
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What are
we still
missing?

%

.

o

Mechanisms of biochar-microbe interactions are poorly
understood

Match-making biochar with soil microbial degraders yields
unpredictable outcome

Can biochar alleviate the salinity effect on soil microbial
community biodegradation activities?

Can biochar provide us with the opportunity to increase
sorption/decrease bioavailability of the chemicals, and
increase surface contact of contaminants with the soil

microbial community?



Field verification of low-level biochar applications

To date little information and guidance on field-scale in situ applications of biochar.
Field trial results are often inconsistent due to variable field conditions and contrasting biochar properties.

Field experiment was conducted on an upland farm located in Zhouzai village, Zhangzhou city, Fujian
province in southern China,

Low level of [Cd] = 0.38 mg/kg (regulatory limit = 0.30 mg/kg in plants growing in contaminated soils)

Pig Manure Biochar (PMB) Rice Straw Biochar (RSB) Rice Husk Biochar (RHB)

Zhang et al., 2023, Front. Environ. Sci., 10,1114335



So where
are we
and what
IS hext?
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Machine Learning
toward realizing
End-to-End
Biochar Design for
Environmental
Remediation

Wang et al., 2024, ACS ES&T Engineering,
doi: 10.1021/acsestengg.4c00267



https://pubs.acs.org/doi/10.1021/acsestengg.4c00267

¢>EBIC
Advancing the field of

environmental

biotechnology

Welcome to the Environmental Biotechnology Innovation Centre. A
world-class interdisciplinary engineering biology research hub for

the development of innovative environmental solutions. Biotechnology and
% Biological Sciences
Research Council

https://ebicentre.co.uk/



https://ebicentre.co.uk/

Advanced biotechnology for sustainable remediation
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https://www.tandfonline.com/doi/full/10.1080/10643389.2023.2212569

Enzyme immobilization as
sustainable approach for soil remediation

Organic-contaminated soils

Wang et al., 2023, CREST, 53, 1684-1708



Current limitations and
future perspectives of
using immobilized
microbial extracellular

enzymes in practical
engineering
applications of organic-
contaminated soils

Current Limitations

: Bioavailability of exogenous support materials
I

|

1 + Affect the physical and chemical properties of the soil
I

I

: + Change in microbial community structure in soil
|

|

:'q/ Secondary pollution caused by non-degradability

High cost for practical engineering application

+ The preparation of the carrier is costly and difficult

+” High cost of large-scale production of enzymes

Accessibility of enzyme immobilization

& The application of immobilized enzymes to degrade
contaminants are mostly carried out in agqueous or
laboratory soil, lacking practical engineering appli-

cation experience

Future Pespectives

Natural biodegradable carrier

&+ The biodegradability of the immobilized carrier
should be fully considered

¢ |deal carrier comes from nature and returns to nature

Reduced carrier and enzyme costs

&' Fabrication of immobilized support materials should
be inexpensive and easy to scale up

be enhanced by constructing an expression system ['ur:
heterologous production of recombinant enzymes

Transform laboratory procedures
into large-scale applications

the selection of process conditions properly in vari-
ous soil types, including real agricultural soil and

I
I
I
I
I
I
I
o' The applicability of immobilized enzymes requires :
I
I
I
industrial soil. I

I

I

I



Developments in support materials for
Immobilization of oxidoreductases

Zdarta et al., 2018, 258, 1-20
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Engineering natural microbiomes toward enhanced
bioremediation by microbiome modelling

a Single-culture
Natural Microbiomes Verify Model-based Results BO . 8P No grawth of X1 or 7D-2 (c)
= - Prediction BO degradation by X-1 (g}
Three soil types = " BO—=BRO— — Mo BRO degradation by X-1 (g)
™ Riands / ﬁ ﬁ EE' Mo BRO assimilation by X-1 {d)

i X1 7D-2 No BO degradation by 70-2 {f)
ard _b ﬂ ﬂ A b Co-culture
3 Experimentally

BRO
Synthetic Cell test under Hypoxanthine

et f e different D-Glucosamine
Sichuan: purple soil . | R environment BO L-rroifne Growth of bath strains (c)
Jiangxi: red soil o Prediction  BO degradation by X-1 {a. g)
Jiangsu: yellow cinnamon soil BO —BRO BRO—DEBHB- = . BRO degradation by 7D-2 (g)

: Svnthetic Microbiomes BRO assimilation by 7D-2 (d})
_s  Herbicide y %1 P 7D.2 Secration of EMs inta medium
Xanthine

(Supplemeantary Fig. 14)

/EJ (BOYDEHE)

D-Mannose
- Herbicide with C.I) é é 4 5 6 7 L-Glutamate
5 3 single strain (70-2/H8) @ @ - g:: C 85, g0 d :: BROI ) )
s| & E g 3 62O @ S el g TRy
-28X- 75 1= T
8— E Herbicide (80) % O @ 2 E 7.0 ;:I/ ¥-1 single-culture ET-B L ¥-1 single-culture
= 3 ﬁ_) =3 O @ ) o %35"‘ By, - =&+ TD-2 singla-culture OE'E' - TD-2 single-cultura
8 a O sas Medium 1 E.U HL_\ X-1 co-cultura 2a.0 -1 co-culture
= e T i @ @ Medium 2 5:5 { ——TD-2 co-culture :: —— 7D-2 co-culture
Herbicide (DEHB . i i i —— 45—
\ﬁ" (DBHB) ® Cultivated in | Medium 3 e 0 12 24 35 48 60 72 84
ympelt Tima (h} Tima (h}
q . : c e f
Slmpllfled Microbiomes 5 ¥%-1 single-culture o o TD-2 single-cullure o gH Co-culture o
% so- - *ém_: - 50 & 'é‘r":" rso b
R1 = el f” F o — -
@t. 2 e — L] Em_ }z 4n§ o 4o —4D§ Gdn_ m%
: —= @
. E Y /\/ B 201 (308 T a0 30 g S a0 a0 E
e A1 H2 HI R4 T B A1 - 7 r 20 E.. E - = H E r 9‘
Degradation  Community Strain  Analysis with LEfSe o uouon § 1 g §7 g % “g
ability structure and lsolation & Random Forest = rgle § 10- 09 g0 -0 & E 101 fE E;{ 10 B
i species models -
funclion pect E 0 — T T T ] é E 04—+ 0 é_ E o ".F —— 0 a
. . . . . 024 6 810 C 024681 T © p246810 =
Functional Microbiomes Keystones |dentification Time {h} Time {h) Time (h)
BO —— BRO BO ——BRO BO ——BRO

Ruan et al 2024, Nat Com, 15:4694



Applications of engineered bacteria for modelling
microbial interactions and pollutant degradation

(a) Dhakar et al. (2021) (b) Canto-Encalada et al., (2022)
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Challenges and opportunities for engineering
biology for environmental applications
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Nature based
solutions for
contaminated land

remediation and
brownfield
redevelopment in
cities

Song et al. 2019. STOTEN, https://doi.org/10.1016/j.scitotenv.2019.01.347


https://doi.org/10.1016/j.scitotenv.2019.01.347

Green land use of brownfield

Green Infrastructure and Urban Biodiversity for Sustainable Urban Development and the Green

Economy
(GREEN SURGE Project 2013-2017)
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Trade-offs and
synergies in the
ecosystem
service demand

of urban
brownfields

Washbourne et al. 2020. Ecosystem Services
Volume 42, April 2020, 101074
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https://www.sciencedirect.com/science/journal/22120416/42/supp/C

Needs for the future of
sustainable remediation

Governance Evolution: Transition from outdated 19th-century
governance structures to adaptive, flexible, and forward-thinking systems
that address modern environmental challenges.

Modern Tools & Approaches: Replace 20th-century tools with innovative
21st-century biotechnologies, integrating engineering biology, and
environmental engineering to drive more efficient and sustainable
remediation.

Digital Transformation: Leverage advanced digital tools, such as Al, loT,
and data analytics, to improve decision-making, monitoring, and real-time
responses to environmental changes.

User-Centric Solutions: Develop remediation tools and systems that are
intuitive, user-friendly, and accessible, encouraging broader participation
and engagement from planners, managers, and citizens alike.



Needs for the
future of
sustainable
remediation -

Evidence-Based Practices: Foster the adoption of remediation strategies that
are grounded in scientific evidence, allowing for more informed and effective
environmental interventions.

Adaptability to Change: Design systems that are responsive to evolving
environmental and societal needs, ensuring long-term sustainability in
resource management and redevelopment.

Citizen-Centered Planning: Emphasize the inclusion of community ideas
and needs in planning processes, ensuring that future remediation efforts
align with the values and expectations of the population.
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